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Introduction

Pnenomena of acoustic reflection on plane boundaries
between fluid and elastic media have ueen studied in the
literature Loth theoretically and experimentally.!’? 2
striking feature is the appearance of the so-called Rayleigh
wave, a surface wave generated in the elastic medium at a
critical angle of incidence, and propagating with a speed
usually below and close to the shear wave speed in the solid.
Most of its energy is concentrated in the solid near tiae
boundary, but part of it leaks into the fluid, causing an
attenuation (complex wave number) in the propagation direction
along the surface.

Zn additional type éf surface wave was shown to exist Ly
Stoneley.® This wave has a propagation speed close to that of
sound in the fluid, is unattenuated in the direction of propa-
gation, and most of its energy is concentrated in the fluid
along the boundary.

In addition to these genuine surface waves, there also
exist two types of lateral waves on a flat boundary between
solid and fluid, which propagate with the compressional and
shear speeds, respectively, of bulk waves in the solid.!

Scattering from solid elastic cylinders has been investi-
gated by means of the Watson-Sommerfeld transformation applied
to the normal-mode series.!’*
waves" with a surface wave type behavior, divided into two

classes: tnose with speeds close to the elastic bulk speeds

In tihiis case, one finds "creeping
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(Rayleigh and Vhispering Gallery waves), and those with speeds
close to tie sound speed in tue fluid (Stoneley and Franz
vraves) . Previously, the Rayleigh and Stoneley-tywe waves (i.e.,
ti10ose tending toward the Rayleigh and Stoneley wvaves in the

flat limit) were studied by Grace and Goodrman® and by Lapin® by
analytic methods, while numerical discussions of the Rayleiglh
and Whispering Gallery modes (higher order modes which arise
Lecause of the curvature of tihe surface) were given by Doolittle,
et al.* The latter authors also treated the Franz waves,7 i.e.,
higher order modes in the fluid whicih arise because of the
curvature of tlie Zoundary (and which also exist on an imvene-
trable surface).

In the present work, we shall establish the connection
between creeping wave and flat surface wave theory by investi-
gating the limit of acoustic scattering from an elastic cylinder
whose radius tends to infinity. In Chapter I, we calculate
the behavior of the circumferential wave modes for large cylinder
radii. Accordingly, the appropriate Debye- or Airy-type asymp-
totic expansions for the cylinder functions are used to solve
tii2 secular determinant for the complex surface wave numbers.
Humerical results for the Rayleigh, Stoneley, Franz, and Whispering
Gallery wavz numbers are obtained as a function of fluid wave
number times cylinder radius for a solid aluminum cylinder in
water, and in one case, also in vacuum. In Chapter II, using
the Watson~-Sommerfeld transformation, we examine the behavior
of the solution for the problem of a cylinder scattering radia-
tion from a line source in the fluld as the cylinder radius tends

to infinity. In this limit, the residue sums corresvonding to



the different classes of circumferential waves found in
Chapter.I are shown to tend individually toward the different
types of surface waves found on the flat surface. 1In this
way, the transition of creeping wave to surface wave theory,
as the scattering object tends toward a flat surface, is

established.
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Chapter I. Surface Wave Modes on Elastic Cylinders

The complex wave numbers of circumferential waves on
an elastic cylinder in a fluid are obtained as the roots
of a 3 x 3 determinant which may be derived in various ways.
One way consists in assuming interior and exterior solutions
in a form describing circumferential propagation® [with a
time factor exp(-iwt) suppressed]:

T = P :ose.‘_vf T (k)

(1la)

A,= AL P T (ke
(1b)

and

$ = P H, lry (1)

where 3?,'3 are the elastic potentials and § is the velocity
potential in the fluid; k is the acoustic wave number in the
fluid, and kL and kT are the wave numbers of bulk longitudinal
(compressional) and transverse (shear) waves in the solid,
respectively. Matching boundary conditions on the cylinder
surface® then leads to the secular determinant. Alternately,
when the problem of sound scattering by a cylinder is solved
using the Watson-Sommerfeld transformation," the same deter-
minant appears in the denominator of the scattered field,

and its zeros give pole-type contributions which represent



circumferential waves. The scattering problem is discussed
in Chapter II.
The determinant in question, as a function of VY , is"

given by o Ll T
a-zHy (X) “Y Xy

/
D= x HOG o o)

O 0(yL3 “YT3 (2a)
where

w5 = X2 AT ) -2 T )

A= € wx T,/ ()

oy = Y [Ty(XQ"XLXv'("L\] (2D)

Ay = -?/u,V [Ty (xn- XT-SV’ (XT%

Ly = e @ty T, &)

2= - [T Gerd +2 T/ 6] (2)
Here, & is the cylinder radius; x=ka= Oﬂ/c. where £ 1is

the sound velocity in the fluid; X y= h,_).ra=wa./c,,_;r

where Kkgr are the bulk elastic velocities

el=(3fen, oroplen

that depend on the Lamé constants 2y“ and on the density

(3)

fa of the cylinder material, while C is the density of
the ambient fluid. The primes on the cylinder functions

denote derivatives with respect to their argument.

Our subsequent analysis shows the existence of different
classes of zeros, corresponding to physically different types

of surface waves which have been classified in the Introduction.
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Each complex root V=Vy+‘:Vi. of the egquation D(V)‘—:O) inserted
in Egs. (1), yields a circumferential wave with wave number
V/au, rhase velocity C'=w4/y,. and linear attenuation V.:/a..
Excitation and re-radiation of these surface waves take place
at a critical angle @ given by sin@= 'C/C.

We shall be concerned with the case of large cylinder
radii, or large values of the parameters VSX(bld%xLand‘xT-
For' this purpose, it will be necessary to utilize asymptotic
exsansions of the cylinder functions, which assume different
forms in different regions of the complex ¥-plane, mainly
separated by anti-Stokes lines. In our case, the appropriate
division of the complex ¥-plane is shown in Figure 1. Only
zeros in the first quadrant need to be considered, those in
thie second and fourth guadrant leading to exnonentially
increasing waves, and those in the third quadrant differing
from those in the first only in their sense of circumnavigation.
Regions 1-4 are serzarated by the anti-Stokes lines of hénCQA,
Fﬁ?(&é , and }ﬂf%kB , respectively, on which also the zeros
of these functions and of their derivatives are located. The

circles, with radii determined by

V-xi|= 00D v-x|= &) (4)
(X, = X or Xy), define regions within which Airv-~tyve
asymptotic expansions are more accurate. Outside, Debye-
type expansions are appropriate; of these,’transition~type

forms must be used near their corresvonding anti-Stokes lines.



In addition, anti—Stokes lines for J;CQJ) originate at Xu,r
and run along the real axis to the left, with the zeros of
J}Cﬂg§ being located along them.

In the following, we shall consider physically different
types of surface waves, corresponding to different types of
Zeros of])éé in an individual fashion.

IA. The Rayleigh Zero

In the limiting case of the cylinder radius %, corre-
sponding to the case of a flat elastic half-space bounded by
a fluid, the speed £p of the Rayleigh wave is known for
practical cases to lie somewhat below the speed £+ of the
elastic shear bulk wave.! The corresponding zero Y of D(V>,
in the case of large but finite radius of curvature, will
then lie to the right of Xy in Figure 1, with an imaginary
part that puts it above the real axis. In this case, the
appropriate asymptotic expansions of all the cylinder functions
appearing in I)GO are of Debve type; cf. Appendix A,

Equation (2a) when set egual to zero, can in general be

rewritten in the form

xhGy= a2 e {xxE F 1 + 294) +2v*{1- x.}(x@}/
{x2x2[x- 296)[1+236)] + v -xF Q[ 1 -xy $07)

(5)

where

£&d= 3:/‘0(13/ AMENN
9= T, "6/ 7,60 e

= —<|/Xa\){3(xz‘) +§’/XL)1— l

(6b)
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h&)= Hgs'(’“/ Ho G (6¢)

If the appropriate Debye expansions of Appendix A are

inserted, we obtain

-3
Y I [ _2h -
"F(xa) (}7 - /> 11"2 (}:'-'-A X + 8(?-‘-[ 2/1)(." ’ (‘&2—__ I) +0’(Xi 3)

(7a)

(‘ ~ - — & | -3
TR \<xg) W*"’“ (75

2((—?’)x " 3(- ?)’/‘ * [ F- l)] F6)

(7¢c)

hoo~ LG~y

where E=V/X;_> }':Y/x both being N&(i) Using these
expansions and calculating Eq. (5) to lowest order in XL)
writing ¥= ’lka-'*a’(ﬂ yields the well-known generalized
Rayleigh equation for the flat half-space bounded by a

fluig,!?

b /1k ‘2. 1
[- ((k (;L kL R ,) é?—%é?—ﬁz_%- (8)

which has as one solution the (complex) Rayleigh wave
number kk=60[c& to be considered in this section.

The behavior of the Rayleigh wave number hkron a
cylindrically curved surface of large radius of curvature
is obtained by retaining terms of order<%ﬂin Eg. (5) when
inserting Eqs. (7) into it. With an iterative procedure
that starts from the flat-limit Rayleigh wave number

Rps = kk'*'(Gzz/aB + 0 ?) %)



the result for Ek is found as

€p= 8% h'h‘: ,:hr ’zg*’xm_x:er+ L ke (;((:T X")}

L
+‘“Eki5.322:+u_L_. !
Xe \XT  Xa

X{ g XRL [xkr K- kaXre Lk Xor
Xer kT Mot

+2‘~£[W g Y]

kI..k'T ‘fxlu__ k kT

(10a)
where
a ,a\h R
Xu: (/!;e“/eL‘) X = CA‘/*R)
> (10b)
(L=Lﬂj. This agrees with an expression obtained pre-
viously by Lapin®. The derivation of Eg. (10a) involved
expansions which are valid under the conditions
\e& hk a\ A
ka L hn. (10c)
e \u\ka-—-\
Rel - (104d)

Of these, the case hﬁ=hT is most stringent because of

the proximity of h& to hT in physical cases of interest.
For the case of a solid aluminum cylinder in water

(c=1493 m/sec, ¢, = 6420 m/sec, c Py =

1 g/cm3, Py = 2.7 g/cm3), we calculated the flat Rayleigh

n = 3040 m/sec,

limit by solving Eq. (8) numerically, with the result

kefb= 0.§22+0.0/s5¢ (11)
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Subsequently, we calculated €p from Eg. (10a), using this
value for hg; The results are shown in Figure 2, where the
trajectory of h(g/k, as a function of the parameter ka is
plotted as crosses in the complex plane. The conditions of
Eg. (10c) would indicate that the most reliable results are
those for Ra>70. Also shown in the figure are points of the

trajectory obtained by Ugin&ius"’?®

who used convergent expan-
sions of the cylinder functions for h¢525, and Debye expansions
for Ra3>25 for a numerical evaluation of the roots when Eqg. (2a)
is set equal to zero.

The present results, for large values of ka, appear to
be a natural continuation of Ugindius' zero trajectory, while
the present low-ka values might be less reliable because of
the approximations used as mentioned. Note that our results
were obtained as an expansion away from the Rayleigh limit,
while those of Ugindius tend towards it without having assumed
it as a limit.

It might be noted that in the limit of an elastic cylinder
in a vacuum (pfbo), the flat Rayleigh wave number hg as well as
the correction term €g become purely real, indicating no radia-
tive losses of the Rayleigh wave in this case.

IB. The Stoneley Zero

In the limit of the flat elastic half-space, the other
solution of Eq. (8) of physical interest is the Stoneley zero,’®
a real root corresponding to a speed somewhat less than the

speed of sound in the fluid.! Accordingly, in order to obtain
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an extension of the Stoneley zero to the case of a finitely
curved cylinder, the transition-Debye asymptotic forms (as
outlined in Appendix A) were used in the left-hand side of
Eg. (5) because of the expected vicinity of the zero to the
anti-Stokes line between Regions 3 and 4 of Figure 1. Debye
forms, rather than Airy forms which are more appropriate in
the circle of Region 7, are used since we again want to obtain
the Stoneley zero in the curved case by expanding about the
known flat-limit Stoneley zero. Sufficiehtly close to zero
curvature, the radius of the Airy circle in thexy%a.plane
("reduced plane") becomes small enough for the Stoneley zero
to lie outside of it. (Even inside the circle, Debye forms
are not incorrect; they just become less accurate).

Ordinary (non-transition) Debye expansions were used for
tiie other cylinder functions in Eq. (5), so that the same
expressions as in Egs. (7a, b) were inserted in Eg. (5).

However, the transition-Debye expansion

! ! = L x) 1 cosh™
/‘/:SGQ"’ (%) /l(v"-x") 'y {e(v x3) hv/x
_Le_(yz_xz)'/iq. vcos[{'v/x}{l + ﬁ'(x")}

(12)
leads to the expression |
~ - '/7- KW Y\
h() (Tz‘—\) + erz_bx 6’&( ) " -
. a2y =x)'=2vcos v/x
+ 2AA(F=)""e (13)

now to be used in Eg. (5). Retention of the lowest-order
subdominant part in the transition-Debye form yields the

exponential in Eq. (13).

et

L)

o =3

porm
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Using an approach analogous to that for the Rayleigh

zero, we find the Stoneley wave number hslas

I’tsl = ks + (es/q) + O’(a"z)
(14)

where ks is the flat-limit wave number, and where

- vk g a0t g +xs>]
! T

+H‘5/Kﬂ_+ | -1 h’x
Xs\ Xs KSLS} {-T _')é& J%_[’)(S_ri'xs,_

~ k3% }{h")(T:I
—s - Rk 2sT) L o _ kh k 1
G R R - e e

— Qika Way &2 [t ke)- (el
Xs

(15a)
with
—_ Cka. kl)%‘- .= (kz kz)y"
= Rs—K, » s \s~
(15b)
(£=L>T). This expression differs from a previous one
given by Lapin® in some details. It is valid under
conditions similar to Egs. (10c, d) with kk replaced by
ks; the most stringent one is the analog of Eg. (10d4d).

It is important to note that the only imaginary correc-
tion term to the (real) Stoneley wave number for the flat
case is the exponential in Eq. (15a), which resul£ed from
retaining the subdominant term in the transition-Debye

. o . .
expansion of Fﬂ,éo. Physically, it corresponds to the fact
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that on a cylinder the Stoneley wave radiates off tangentially
into the surrounding fluid while on a flat surface, its wave
number is real and it cannot radiate off any energy.

For the solid aluminum cylinder in water, we solved Eag. (8)
numerically and obtained

/és//e = [003s” (16)

which agrees with earlier results.!®

Inserting into

Ec¢. (l5a) vields the points presented in Figure 3, plotted

as a trajectory in the complex ks/k, plane with values of ka,

as a parameter. The imaginary scale of the figure is greatly
expanded because of the smallness of the imaginary part of the
zero. Due to the mentioned conditions of validity of the
aporoximaticns, the points in the horizontal portion of the
figure may not be numerically reliable. It should be noted

that Lapin's® formula would give the imaginary parts of the
Stoneleyv zeros only half as large as given by us, but we believe

this to be due to an error in Lavin's printed expression.

IC. The Franz Zeros

This type of zeros arises due to the finite curvature of
the surface, and therefore exists even in the case of impene-
trable objects. The corresponding surface waves get on and
off the surface tancentially,! and they are no longer present
in the limit of a flat surface. Therefore, one cannot expand

the positions of the zeros about the flat limit, as had been

done in the preceding sections. Instead, we shall expand about

the known positions of the zeros for either a soft or a rigid

fased
=
<
-
=
wn

e
pmpen
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cylinder with finite curvature. The latter are given by the
oy &
complex zeros of // 60 or/ﬂ’é@ respectively,’ which are

located along the anti-Stokes line between Regions 3 and 4 in

Figure 1. Explicitly, they are!! (m= 1, 2,.....):
— ' Laffaf -
Yeigidin= X~ T '/3é</a§/3+ e ["l:' feo—1 / (!o?,ni‘ (2/x)73
+B’(X") (17a)

Yot = X~ th(x/a)'/s+ e:'.:m/:c( . /(,03 (2 /x)-la_‘_ %)

17b)
where N, are the zeros of the Airy function, and‘%;those
of its derivative:
ol [
AL< =0 ALG )=0.
=0, T (17¢)

For the case of the elastic cylinder, we use the
ordinary Debye expansions for the cylinder functions in
‘;CX;.\) j(xzb of Egs. (6), but the Airy-type asymptotic expan-
sions (Apvendix A) for \\QO. The latter are valid inside the
circle of Region 7 in Figure 1 and had also been used to
obtain Egs. (17), but the results link up smoothly with those
for the zeros outside the circle, in the transition region
between Regions 3 and 4 where transition Debye expansions are
used.!? 1In fact, in the reduced Vﬁhz plane, the radius of
the circle shrinks with increasing kRa at the same rate at which
the zeros tend towards its center.

One finds in this way:!3

—gu / -iitfz

hoy~ -+ 3B — ¢ B3 Al (g 7)

3Ix P ox 5;3- AL (ie-—i'w?l)
+8’(x"‘z"‘/3) (18)
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with P)%- and w» defined in Appendix A. VWhen this is substitutead

in Eq. (5), we obtain the equation
Lyl /L

A é}e ‘@/3>//h<-3_e.“/3> =T

(19a)

a“/{: [(f’z‘cch/S)C—fz!)/ +(f3x) L _B]

+ B (<)

(19b)

and
> = (‘z{— (U=27) (- 203 7)
+4er }:?Tl__(?:")(? - l)] /L} . (19¢)

The method to be used for solving Eq. (19a) will
depend on the magnitude of . Using Egs. (A8) and the

relations

v=x+ 0 B)

(g /oy '= ~GcR) P+ B ) |

we obtain from Eg. (19b), to lowest order in the quantity,x”y%

= 0 (xPaire/e)

where ;= k,_//a (L'=L,T). For typical fluid-solid interfaces

(20)

3
one has 0,(;_1'(0,/(0,_40./ , so that ['41 for X=X~ /0" (for an
aluminum cylinder in water, Xc™=6000). In this case, we

follow a method of Streifer and Kodisg!® !S5

and, letting
M3
7= 1—9"/, we expand Ai (7) and /94-("1) about 7,, , defined in
Eg. (l7c¢) as the zeros of ﬁ:.(*l) . Subsequently, the quantity

11-;1_" is expanded in powers of W=~-{["exp(if)f3), and we obtain

gATITSSYTIOND
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from Eq. (1l9a):
%(’SV} =- ?nem/3+ Ae—m/’\/\/’?‘n + L Wyi:
- E/ Gy + ‘/ @;fnsﬂ + O(*E)

(21)
Using Eq. (A8d), an iterative solution of this equation
gives the result for the Franz wave numbers (labeled by
n= l)-?_\,-u)'-
= VY,
h":"\ F"/a' (22a)
where
Vi, = X = ‘;f,,ef‘r/"(x)'/:' 2T (jg__ ><3_>/3
(VA
L@k 3 2
&) - i— &)
7" Xq;’ 2
+Z L (l_—_L -t _k
S
! T 2062
+z e (' 4+ ><x)"/3
E3 == )(Z)"+ 0D (xex
K VAR c)(22b)
with 2 | b
Ke=(k-kY)™ (=01
Z=QQ’LZQ
2 S
(224d)
S T +4 4 X X kP
(22e)
t= fa;-8+4 )(J(T/Q‘ YN ER NS
X Xr
(22f)

This result was arrived at after one iteration, assuming

that 4, ¢a&r<1, and that E=3<x—:76). These conditions are
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met for the material parameters of typical fluid-solid cases.
Accordingly, the above asymptotic expression for ’?n constitutes
a series whose terms decrease as powers of Xﬁh.

Note that in Eg. (22b), the first three terms agree
exactly with fhose of the rigid zeros, Eg. (l17a), and that the
material properties enter only through higher-order terms.

As in the vprevious cases of the Rayleigh and Stoneley
zeros, the binomial expansions used in obtaining Egs. (22a, b)

are valid under the conditions

X‘ > 2 ,77'1/0—0(:.1) 3/: (23a)
x> 2 R, [1s] 3/1)

X )»:{‘;i“t/s‘#?

(23b)

(23c)
They impose lower limits on x, depending on the order
of the zero. 1In practice, these are found not to be very
stringent, the most stringent one being Eq. (23a) with
{=T. 1In fact, the lower limits of validity were found to
be as low as ka3 for Fl, and e.g. kave0 for F5, for an
aluminum cylinder in water.

Equation (22b) will be a useful expansion for a large
range of x, as long as the numerical value of z is such that
subsequent terms decrease. However, if x becomes very large,
X > X (including the flat limit x-»%), we will have r'>1 from
Eg. (20). 1In this case, we expand AL/(T() and AL(?IB in Eq. (19a)

about 7&’ i.e., about the zeros of AL(‘VD defined in Eg. (1l7c).

GITITSSVIONG
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Then, the gquantity 7‘1n may be expanded in powers of Yul,

yielding

%(’SY)—""[ i +( "]-a/:s) L/\[3(/\) + 0 "/3>

(24)
Using Eg. (A8d) and iterating again, we obtain for the
Franz wave numbers Eq. {(22a) with
L) 3 ‘2
Vo= X~ )/ +Zli e %@'/3_'_
X z
Lll a z/3
't +‘ — k.. +_ < > ~|
- — | + X
\:_ AN 32|\« &l >
(X>Xe)  (25)

which was arrived at after one iteration, assuming dLLdTL.l
and ZF=GCD. With this assumption, Eg. (25) again represents
a series whose terms decrease as powers of )(75 . The first
three terms, in this case, agree exactly with those of the
soft zeros, Eg. (l7b), and the material properties enter only
in higher order terms. Conditions of validity are now Egs.
(23) with‘i; replaced by‘?n.

Numerical values of Eg. (22b) are shown in Figures 4a
and 4b for the two lowest Franz zeros, Fl and F2, for an alum-
inum cylinder in water, as compared to the zeros for soft and
rigid cylinders in water. The zeros are plotted as trajectories
in the complex kpn/k plane with values of ka as a parameter.
Only those soft-cylinder zeros are shown which do not interfere
with the rest of the figure. It is seen that in the range of
x presented here, the elastic-cylinder zeros lie close to those
for the rigid cylinder as expected. For increasing mode number,

corresponding elastic and rigid zeros move closer together.
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ID. The Whispering Gallery Zeros

This type of zeros also arises due to the finite curvature
of the surface, but is associated with the material properties
of the elastic solid, and therefore does not exist in the case
of impenetrable objects. Since they are no longer present in
the limit of a flat surface, we cannot expand the position of
the zeros about the flat limit. Instead, we find the positions
of the longitudinal and transverse Whispering Gallery zeros by
expanding about the known positions of the zeros of ];(Xf)
and 3;6G§ , respectively. The latter are located on the real
axis in Figure 1, to the left of X_ and X, respectively, and

are given by'* (M= 1ga,...)!

y";'; n= ATt 7lVl(xL’T/ 2>I/3+ (’l:/ 60><2/ XL>T)'/3 + BI(XL‘;!) (26)

where 7, are defined in Eq. (17c).

ID1. The Transverse Whispering Gallery Zeros

In this case, we calculate the trajectories for the zeros
which tend toward X+ for large cylinder radii. The region of
interest in Figure 1 is Region 6, where we use the ordinary
Debye expansions of Egs. (7) for FC&) ’ g@ﬁ) , and b\@ﬁ, but
the Airy-type asymptotic expansion (Appendix A) for S ICHE

Flxry~-3 +_}£‘§>€' +23“——-3:-A:LI< 3+ 60N (27)
T T Ixr Ai (3—7
with P,i_ and m defined in Appendix A. One can write g(XTS
in terms of‘?éﬁé in Eq. (5) using Eg. (6b). Substituting

these expansions into Egq. (5), we obtain the eqguation

AR =T7

ﬁ
bty
o
.
j”
—_



20

where
= WST( L (G2 4d) | o
AR R e R o
N | -&/3
3X7 +TL-§573 + O(x7 /)_

Using Egs. (A8) and the relations

3’=¢¥ri-8<k%k§

)

we obtain from Eq. (28b), to lowest order in the quantity Xt o

= 00"

Therefore [}>1_for all X¢>1, and letting'7=;5 we expand

(28b)

(29)

Ag'(yl) and /h(';z) about vzn. Then the quantity 71—11,‘ is expanded

in powers of '/f} yielding

9 G A= Mt RATONEN paitty VA UY

(30)
Using Eq. (A8d), an iterative solution of this equation
gives the following result for the transverse Whispering
Gallery wave numbers (wm=I!R... ):
Rutn= Yorn|a (31a)
where |

Vo= 7 ) @9(7'/1%

Fptr (- 7 4 ) E P g6

(31b)
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with 7G-defined in Eg. (22¢) and
-1
m:—ygﬂgﬁﬁvﬂlghxﬂ}

2 a 2\
oo C2 7(3(7«-,’—'— 70(‘_"> +1 (’,h?o("r a7 ""(L) - .
e W (o= ) 1 iR ot - )Y

(31c)

(314)
This result was arrived at after one iteration, assuming
that @ <dy41l. The first three terms agree exactly with
those of the zeros of J,(¥v) , Eq. (26), and the material
properties enter only in higher order terms.
The binomial expansions used in obtaining Egs. (3la, b)

are valid under the conditions

3
x> 202 n_ |

"(7}“’(1.:“ >
(32a)
X> Jl,lﬂ*r l Iqh
7z
(32b)
X>2 32
X1 \Q“q;‘ .
(32¢)

They impose lower limits on X, depending on the order

of the zero, the most stringent condition being Eq. (32c).
For an aluminum cylinder in water, the lower limits of
validity were found to be kaVv87 for WT,l and e.g. kav547
for Wr,5. Numerical values of Egs. (31) for this case are

presented in Section IE.

foed
=
<
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ID2. The Longitudinal Whispering Gallery Zeros

In this case, we calculate the trajectories for the
zeros which tend toward X, for large cylinder radii. The
region of interest in Figure 1 is Recgion 5, where we use
the ordinary Debye expansion of Eg. (7c¢) for h(x), and the

Airy-type asymptotic expansion (Appendix A) for fX):

A A s IO

with F;b.and wm defined in Appendix A. The method used

(33)

for finding the longitudinal zeros involves an expansion
about the zeros of 3;6&) which lie on the anti-Stokes
line for J,.(XT) (cf. Appendix A and Figure 1), and, there-
fore, would necessitate the use of the transition Debye

expansion (Appendix A) for Q(ﬁﬁi
£~ - (-1 o v v 005 5 ) ‘!} « 607,

(34)
However, the use of Eg. (34) renders the solution of
BEg. (5) intractable analytically because of the presence
of an overlapping double infinity of zeros. One group arises
from the Airy function of X and the other from the tangent
function of Xy. The latter group corresponds to the transverse
Whispering Gallery zeros which lie outside the circle of
Region 6, and they link up smoothly with our results, Egs. (31),
for the zeros inside the circle. We, therefore, approximate
#(x%§ in Eq..(34) by the appropriate non-transition Debye

expansion (Appendix A)r

L= L (|~?.,‘.‘)'/1+ &) . (35)
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We will determine the validity of this approximation by a

self-consistent check after we have calculated the desired

AITITSSYIOND

zero positions.
Writing 3_()(:.) in terms of ¥ using Eq. (6b) and sub-

stituting these expansions into Eg. (5), we obtain the equation

Ailgyautzy=T o
ot QT o) @R (Y
W{;ﬁ.[ “T 4(0‘1-;1(’ ?1>/:<‘ ‘;13)'/2.
e _P_agﬁ} + 8. (36b)

Using Egs. (A8) and the relations

v= X+ B
Cfany'= = Gy + 0GR,

we obtain from Eq. (36b), to lowest order in the quantity Xfﬁ:

3
= A 2
&(o?ér‘ . (37)

Therefore, for dLLdTl~1)‘1}1_for all X1, and letting

where

7:;, we expand HL/@) and A‘("l> about '?n . Then the gquantity

?“1% is expanded in powers of VEL , yielding

%/(X..,%: 'In */?__'+('?n/3) ’?_—3 + 0@64/3) .

Using Eq. (A8d), an iterative solution of this equation

(38}

gives the following result for the longitudinal Whispering

Gallery wave numbers (N=4XR,...):

h~ = Y,
whn WLn/“
’ > (39a)
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where

— '3 !
"on™ Xt (50 a2 Py L aactru
- CaRal-at}

+ ‘—C—“_.m_ \ u .V-
@A F)? ke Sl (N

alpaerus V) ap
&(Qo(,}-o(-‘}“)’} é%_\ + ¥

(39b)
with.’ﬂ_defined in Eq. (22c) and
~ 4 A (AP A
%— E. ’ 3 (39¢)
= ,,(,j (lOKE—«T—K\ _2p,a - et —aar)
AXE Reado?)  pared-adPRad)
(394)

This result was arrived at after one iteration, assuming
that o &X741, The first three terms agree exactly with
those of the zeros of I;Qﬂ3>_Eq. (26), and the material
properties enter only in higher order terms.

The binomial expansions used in obtaining Egs. (3%a, b)

are valid under the conditions

X> 2&’,3“ n 3
la(%—o(,_ > (40a)

X> 2 '“4. In \
(40b)

32,13/-1 .
AE-F| (402)

X>2«
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They impose lower limits on X, depending on the order of the
zero, the most stringent condition being Eq. (40c). For an
aluminum cylinder in water, the lower limits of validity were
found to be kav23 for WL,l and e.g. kavl4l for WL, 5.

In order to determine the validity of our approximation
for f(X1), we substitute our result for Yun » Eq. (39b), into
the exact expression, Eg. (34), and into the approximate
exXpression, Eg. (35), and compare the two for the case of an
aluminum cylinder in water. We find that the approximation
imposes an upper limit on x which increases monotonically
with mode number N. This result is illustrated in Figure 5,
where we have plotted, as a function of N, the value of ka at
which the absolute value of the relative error in the approx-
imation begins to exceed 25 percent. Numerical values of
Egs. (39) are presented in Section IE.

IE. Discussion of Results

In this section, we present a graphical comparison, for
the specific example of a s0lid aluminum cylinder in water
(and in one case, also in vacuum), between our analytic results

¢ who used

for the various zeros and the results of Dickey,!
numerical methods to solve for the roots of D(v)=0. Dickey

did not use Egs. (7), but calculated the asymptotic expansions
of the cylinder functions directly using the Airy-type expan-

sions of Appendix A or Watson's formulation!? of the Debye

expansions. It is found that the two methods complement each

other insofar as the analytic results can be more easily carried

to very high values of ka (where both methods become more

{ERE
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accurate, but where the numerical trajectories of one type
of zero often become hard to determine and to identify among
the variety of other zeros), while the numerical results
retain their accuracy down to lower values of ka than the
analytic ones, due to the various approximations made in the
latter method. For the case of the Franz zeros, both methods
are accurate down to very low values of ka and the agreement
between the corresponding results is excellent. For the
Rayleigh, Stoneley, and transverse Whispering Gallery zeros,
an apparently smooth transition is obtained from the numerical
results below kav1l00 (below kan200 for the Whispering Gallery
zeros) to the analytic results for the higher values of ka
up to ka-»®. Numerical results for the longitudinal Whispering
Gallery zeros are not yet available.

Figure 6 presents the complex trajectories of hg¢ﬁ, for
the Rayleigh zero as a function of the parameter ka. The
circles represent the numerical and the crosses the analytic
results (the latter being also shown in Figure 2). The agree-
ment becomes better as ka increases. The circles appear to
tend towards the calculated flat Rayleigh limit for ka-»ed (square),
which had been used as the anchor point for the analytic cal-
culation, but which has no connection with the numerical calcu-

lation.

In Figures 7, dispersion curves for the Rayleigh zeros are
shown for aluminum cylinders in water (Figure 7a) or in air
and vacuum (Figure 7b). The Rayleigh wave phase velocity Ag’

is plotted in Figure 7a relative to the sound speed in water;
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i.e., essentially the quantitylck¢cEEk/kgy is plotted, where
h‘.kl,E Re(h@. The results (circles: numerical results;
curve: analytic result) tend towards the flat limit,Akqﬂc,

as ka=320, 1In Figure 7b, we plot the numerical Rayleigh zerocs
(circles) for the case of an aluminum cylinder in air GC=330
m/sec,(’.'—'- 0.001293/04\3) and the analytic results (curve) as

87,18 (~rogsses) for

well as some previous results of viktorov
the aluminum cylinder in a vacuum. Here, the values of ckyhk
(i.e., normalized to the flat Rayleigh speed) are plotted vs.
hw&_ The flat limit for aluminum-vacuum used here was taken!'®
as Lg=0.93387=2836 m/sec.

Figure 8 presents the numerical results (solid circles)
and the analytic results (crosses) for the Stoneley wave phase
velocity,.csjb , approaching the flat Stoneley limit Csﬁg=
0.9975 (calculated by our numerical solution of the flat
Rayleigh equation) as ka-»®., For values up to ka = 100, the
agreement is not as close as for the case of the Rayleigh zero,
but as pointed out earlier, the analytic method should become
valid for the Stoneley zero only at relatively higher values
of ka as compared to the Rayleigh pole.

The first five Franz zeros, together with the Stoneley
zero again, are shown in Figure 9; here, Figure 9a presents
dispersibn curves of.£¢[¢ and csqc, plotted vs. ka and Figure
9b shows the normalized attenuations or imaginary parts of the
wave numbers,‘ﬁq/ka and )kqjkq , plotted vs. ka. The agree-

ment between the solid curves (analytic results) and the

A3ITITSSYIOND
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circlgs {(numerical results) is excellent, reflecting the
increased overlap in the range of validity of the two methods
for this case.

Results for the Stoneley zero (solid circles and crosses)
have been entered in Figures 9a and 9b also. While its dis-
persion curve is very similar to that of one of the lower
Franz zeros, it may nevertheless be clearly distinguished from
the latter by its much lower attenuation as seen in Figure 9b.

In Figure 10a, the dispersion curves of C«nfc for the
first five transverse Whispering Gallery zeros andlckyk, for
the Rayleigh zero are plotted vs. ka. The s0lid curves are
the numerical results, while the long dashes correspond to
the analytic results for which the previously mentioned con-
ditions of wvalidity, Egs. (l10c) and (32c), are satisfied; the
short dashes represent the analytic results for which these
conditions are not satisfied. There is a smooth transition
from the numerical to the analytic results, with the value
of ka for which they link up increasing with mode number, as
expected. In Figure 10b, the normalized attenuations ’Q/ké>wr
are plotted vs. ka. The numerical results (solid curves) are
shown for the first four zeros, while the analytic results
(long dashes) are shown for the first two. Although the agree-
ment between the two methods is not as good here as it was in
the dispersion curves, there is, nevertheless, a smooth transi-

tion from the extrapolated numerical (short dashes) to the

analytic results at high ka's.
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The analytic results for the first seven longitudinal
Whispering Gallerv zeros are shown in Figure 11. The dis-
persion curves Of,cuLﬁg vs. ka are given in Figure lla, and
the normalized attenuations \Qﬂ&bwL vs. ka are plotted in
Figure 1llb. For each mode, the reagion of greateét accuracy
is shown as a solid curve whose lower limit is determined

from Eg. (40c) and whose upper limit is kam from Figure 5.

ax

Thus, our analytic and Dickey's numerical results,

arrived at independently, are in good agreement with each

other, increasingly so at high values of ka where the guantities

tend toward their expected flat limits.

(ERERRRS- AN



Chapter II. The Scattering of a Cylindrical Wave

by a Large, Solid Elastic Cylinder

If a cylindrical wave, emanating from an infinite line
source of unit strength at S(V;,p) in the fluid, is incident
upon a solid elastic cylinder of radius a. (Figure 12),‘the
total acoustic pressure at point 136Q§% in the fluid is!’?!?

[with a time factor exp(-wt) suppressed]

p= _%_z €acos N (Bv\ID\ H(\S& G),  rav, (41a)

where
€°=1'> Sp=2, N>0 S

Ba= Dy, Hy k) + B, H ()

(41b)
@
AHP®  at oY
- 5
b= - fo: @ A2 xR
o o2 A
n
5
(41c)

and Ik,d*", andagx (L=432 ) are defined in Egs. (2).

30
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Application of the Watson-Sommerfeld transformation!’!®

to the series solution then leads to

P=P+Px

(42a)
where
P P ey o DR e,
(42b)
Pr= ‘#f ?.mv o3 VC"-‘P\B“ va@%
(42c)

and the contours C' and C, are shown in Figure 13 and
result from opening up the original contour C of the Watson
transformation. The contribution of the "background
integral"'Pr has been shown to be small?? and will be
neglected. The contour C; surrounds the zeros of IL (first-
order poles of the integrand) discussed in Chapter I.
Splitting Px into integrals over contours Ci and(zz (Figure

14) and applying Imai's transformation®’!?

o

cos V@—f)= e eos vP-i eMPS Ny
' (43)

Luws
=i
3
-
o2

Yo
e

rm
]
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to the integral over'(:zserves to split off the geometrical
part of the solution (which no longer has I/sin®ty in the
integrand), thus yielding residue sums which converge on both
the insonified and shadow sides of the cylinder. The geometri-~
cal part P; can be evaluated using the saddle point method
(corresponding to the far-field approximation r3n;§eo), where
the saddle point contour C% is drawn in Figure 14. Also shown
is the saddle point (to the right of ka) which yields the
incident wave and the saddle point Y which yields the geo-
metrically reflected wave!’!? and separates the two types of
residue sums Pi and F: (arising from the integrals around con-
tours Cleﬂuica). Yigher-order saddle points yield waves

which are transmitted through the cylinder?’. Ve then have

Px= Pt +Pa2*Py

(44a)
with
- cos ¥, (- .\ \
n ka
FkLsz-Vk
= -1t cos (44b)
A — ' ('\ 1
P S S KD,
F&g'ﬁ‘>\g
(44c)
P e P Be oy
s Dy >
(444)
where

(44e)
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In the limit of infinite radius, it can be shown that'F3 yields
the corresponding geometrical portions of the field (i.e.,
incident, geometrically reflected, and transmitted waves) for
the flat elastic half-space (cf. Appendix B and Brill?®’21),
We are concerned here with the residue sums PL andst, which
vield circumferential waves, in the limit of zero curvature.

We first examine the limiting behavior of the saddle peint
Y5, since its position determines which residue sum is used.

The equation which Y5 satisfies is:?!?®

cos's ycos™Ys — 2coslYs | ‘P
hV‘ k"o ka

(45)
In taking the limit of Eg. (45), the following changes
of variable are used?? (and will be useful later on):
Y= hasin®
) (46a)
S==<119>
(46b)
R:r—q) [R,= N-a,
(46¢)

where © is the angle of incidence on the flat elastic
half+-space. Thus,@, r, and r, tend toward infinity while
the source-surface and receiver-surface distances remain
constant. KXeeping terms in Eg. (45) through 3’@59 , we then

find that:

in 8 s
< s= [} .
[S"+(R+Eoﬂh (47)

L7
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When we make the associations

S—ox, Rz, Ro>2o, (48)

it is clear that Eq. (47) is exactly the equation satisfied
by the saddle point Gt for the flat elastic half-space (cf.
Appendix B and Fig. Bl). Thus, the saddle point Ys which
yields the geometrically reflected wave in the cylindrical
case tends toward the saddle point 6, which yields the geo-
metrical reflection in the flat case; the two are related by
the transformation Eg. (46a) between the Y- and ®-planes. We
will investigate the case where Rehw0~4vséx (cf. Figure 14)
which, in the limit, maps into the flat case shown in Figure
B2 and discussed in Appendix B. Thus, we consider a source-
surface-receiver geometry for which, in the flat limit, all
the surface waves (except the Stoneley) contribute to the
field at the observation point. From Figure 14, it is clear
that residue sum Ps includes the Rayleigh and Whispering
Gallery poles, while residue sum P= includes the Stoneley and
Franz poles.

ITA. The Residue Sum Pa

Using the expansion!

e 6 Amity,
. [ 8
- \ =_-QLe''™m 2 e n
sin iy, m=0

> (49)

we can rewrite P as .

2 LV 2 . - -R-~
P - % ; mzzo [e Ya(P+ Pram® cin(f-an Qm@)]

X by"‘ ;'\(kﬁ HS\(M,\ Rev> ¥ (50)
D, n n )

n
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We then separate Py into the sums F:f: over the Franz poles
and P@s' over the Stoneley pole. Using the Franz pole
positions Vg, of Eg. (25), the appropriate Debye expansions
(cf. Appendix A) for the Hankel functions of ¢ and vg , and
Eg. (46b) along with the relations (cf. Figs. 15)

d= - "3)',1) do= (> 0‘,')":3 (50a)

‘?‘— -ta = -ta
= Co0s = ? = C0S —
v e %’ (50b)

we find the following asymptotic expression for the Franz

R l @+ +(R+R ) S)-k: s
~oL —_— o s|-k¢s
FZ’F 2 nzqg:-o 'Z(ddb.”'{re "3 ]
+ e;_ [}(4°+<[§+ (k+k..\s‘f]— kis'
AmTY,
X ™M Fn by,
Ii?n
{(51a)
where
= > k |/3 -2
!Z'. 1\11\!\\(3—.-\ A /3’ (51b)
Ry =17 Ry > (51c)

and the arc lengths § and s’ are shown in Figures 15.

[omnd
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The term ‘LVFV\/D.VF;« contributes an algebraic (non-exponential)
factor (e.g., see Nussenzveig's calculation for the soft
sphere??®). Thus, the vt* Franz wave gets on the cylinder
tangentially, creeos clockwise as in Figure 15a (or counter-
clockwise as in Figure 15b) around the cylinder [traversing
the arc length s (or s')] with speed 0ﬁkh+h,) and attenuation
hL, and gets off tangentially after m circumnavigations. As
a tends toward infinity, R;s and h;sl also become infinite,
30 that in the limit of zero curvature, the Franz waves are
exponentially damded out and never reach the observation point.
Thus, they do not contribute to the field in the flat case.

In an analogous manner, we find the following asymptotic
expression for the Stoneley wave (cf. Figures 15):

o L < \ (e @erd)+ kg, 5)- Rsis

g 2 w=o kR AL
+et [Rlord)+Rsns}- hsa.sr}

2mit Yy
Xe T by,

Dv,>

(52)
where we have assumed that the fluid is slightly lossy so
that the flat Stoneley wave number k, is complex (k§=h5,+th0.
Thus, the Stoneley wave is also exponentially damped out and
never reaches the observer. As the cylinder radius tends

toward infinity, the Stoneley wave contributes to the field

only in the case of glancing incidence (\gzka), in which case
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the method of steepest descent riust be modified to take into
account the effect of a pole near the saddle point ¥ (cf.
Appendix B).

ITB., The Residue Sum Pa

Using the expansion of Eg. (49), we can rewrite P as

Pi= C:F - [e..v,,(<9+aw\ﬂ) —vr.‘(f 2’?—2m”)] m(@
wm=0 Fr“<f%
£.00

(B )
Rv,
53»'7 Fi(v>\y= G{V“) H ( g g

Re vns s, (53a)

where

(3
#LC%A::)(tggjgﬁ aI)CWB (& Bi>)

L
Hy, & Dy ) (53b)
La Ll T1
DA=| Y AT
! ol -3 T3 T A3 o3
p) > (53c)

and.d;‘ andacﬁ (¢=1,2,3) are defined in Egs. (2). We note
hat Eg. (5), which we solved for the pole positions, corre-
sponds exactly tO'ﬁgsé set equal to zero. We separate'P1

into the sums P1R' over the Rayleigh pole and Fqﬁ_ and Px;r
»

over the longitudinal and transverse Whispering Gallery poles,

respectively.

We calculate + first. Using the pole position
1R

Vo:h 1R
RTTRTS (54)

where hklis given in Egs. (9) and (10), the appropriate

Devye expansions (cf. Appendix A) for the Hankel functions

<z
e
o
=~
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of X, r, and r.

<-?> -2 v, cos~ kg p
Hyp @, Do e )
Hy,, (0 N
(:R IO Q a'h.[)(,zq, Ya'COS™ ‘hk {@F—J (55a)
v,t/(k"\ Hyk,(kv*w ﬁ&x
‘-KK(R""RoB
> (55b)
where (cf. Apvendix B)
K = (k= h,;;ﬁ: k cos 6, . 5o

Since 4166 set egual to zero and calculated to lowest order
in X corres:conds to the cgéneralized Rayleigh Eg. (8), it can

be shown that, using Eg. (46a),

'?1(ng ~ k.(l cos ek D ( R\
2 £ ey, 3,6 °

(56)
where D, iz defined in E¢. (B3c). Corbining Egs. (55) and
(56), and using Ec. (46b) along with the fact that asymptot-

ically (cf. Figure 16)

L GINS‘V{&: So =—S—
St O MR g0 T30 (57a)
cosby, ~ cos = Ru -k

e (575)

we find the £following asvmptotic expression for the

-

” L. D& ea@@‘ﬁ/)mksﬁ]
<
D, (e,g
LB +a>+husa} 2oy

Rayleich

Part ™
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where the arc lengths §, and S/ are shown in Figure 16.
Thus, the Rayleigh wave is excited at the critical angle
(RE)E”E creepé clockwise ( §z) or counterclockwise (Se)
around the cylinder with speed &7ﬁekm and attenuation]jﬁhk
and radiates off the cylinder at the same angle after m
circumnavigations. As a tends toward infinity, Sé also
becones infinite, and therefore the imaginary part of hR_‘
causes the wave which creeps around the shadow side of the
cvlinder to be exponentially damped out, so that it never
reaches the observer. The same argument holds true for the
rultiple circumnavigations (m#0) and therefore the only wave
which reaches the observation point in the limit of infinite
radius is the one which traverses the finite arc length Sp
and corresponds exactly to the Rayleich wave for the flat
elastic half-space [cf. Egs. (B8)]:
-t D (9& E‘@o*&*hks"]
D (99.\ . (59)

By usinc the Wronskian relation?®"

(2\ ( )() H Y (x} .

Hy H2 H"’ ®  Mx H"‘(x> HE

P’

(60a)

and the fact that [cf. Eg. {(53b)]
=0, (60b)

we can further simplify our expression fOI'PL‘

Py ~6 g i [ Oh(P+am u) -..Yn<<P -2~ QM’})][ ® (x\]

ad K o ko
AGIACS s ReMpex. 61)
SR ..,

 f

i
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We -calculate the limiting behavior (x-»s) of Py using the
vole positions MQL“\ of Egs. (39) even though the method used
to calculate them imposed an ugper limit on X which increased
with mode number w (cf. Chapter ID2. and Figure 5). The just-
ification for this procedure will be seen later in the calcu-
lation. For Tﬁﬂ- we use the vole positions %“K“ of Egs. (31).
Then, using Eq. (46c) and the appropriate Debye expansions

(cf. Appendix A) for the Hankel functions of X, v, and ¥, , and
keeping one more order of accuracy of YV, in the phase terms

than in the algebraic factors, we find that
,,56(9:_ J_a)(,_.,cxp{;’«.[—}{qa jﬂ (lzn) 3k

_VnCOS “LT —Jl;—]

(62a)
Hia Qe Hi Gy~ exP{RLD{LTCL _’L)@J)“h I
Hix

e exr=(<+mDaT

_2 L.,. /3 ;/3:})] _y >
){ wLwTn y (62b)

where (cf. Appendix B)
7(2’1_ = ( k- kt)-r)'/"z k cos &L,T . (62¢)
In order to calculate the guantity
/y']—l:: 1
EFL( ") é%"&(’b\ ey

(63)

we use the following asvmptotic expression for é‘tﬁ[rk

[i.e., right hand side of Eag. (5)1}:

o R (BT Do ng
2 L_g 'F'Q(T\} (64)
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where }:.=V‘/x and -F(x‘;)) t=4,T , is defined in Eq. (6a).
The following Airy-type asymptotic expressions for #Cm)
and its derivative will also be helpful [cf. Egs. (27) and
(33)1:

N DL A o RPA
fed Sx%m% &\rm%

R P s - /“'(_z) )
" AL(3 avng hp' [AL > 53%535‘

A — 2 a ! _\2 [ A L
=% [_7‘5_”“( M~ JR\PAG
X, 5% AL [x;) )

where we have calculated the leading order behavior of

(65a)

(65b)

these guantities. Then I #;643 1" for Vk=*bﬂn is found by
using the asymptotic expansions of Chapter ID2. and Egs.
(64) and (65) along with the fact that [ef. Eqgs. (36)]
. a 2\ _ 1'/7—
T W 1€l 2 Gy

el “L"‘*U« P L R
(9 dT

The result is

'F (wz_’n\ A - w "‘T
& D Gy X &

Similarly, [ ﬁf(‘/n) 17 for Yo=Ywrn is found by using the
asymptotic expansions of Chapter ID1l. and Egs. (64) and

(65) along with [cf. Egs. (28)]

e\ T P por

Y= YWTn 4ﬂ —L + ‘/ C/—“‘)I/L )
~ X "’ fl. T (68)

and the result is

' -1 (atr- )
D Rl N 2t X )
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Finally, using Egs. (62) and (46b) and the fact that

asymptotically (cf. Figure 17)

. n . —~ So = S
S e'L‘TN sn B’L)T - goo_ - a_ )

(70a)
w =Ro = R
cosOyy ~ cosbr =5
° (70b)
LA . . th . .
(where Ehg- is the excitation angle of the W~ Whispering

Gallery wave) we find the following asymptotic expression

for the longitudinal and transverse Whispering Gallery waves:

- . NuT . 0/3
e e R
n={
. Nt .
+ eL U‘t (cl °+<l)+ hL T S()-a Z e.. Tn (E;e.__r)l/ao:ll:’s :)T:}
n={

LI (71)
X 3 eimun
=o

where [4(Vir )1" is defined in Egs. (67) and (69), AL (AW

is the number of longitudinal (transverse) Whispering Gallery
poles in the first quadrant of the ¥ -plane (cf. Figure 14),
and the arc lengths SLﬂ- and séT are shown in Figure 17.
Thus, the nth longitudinal or transverse Whispering Gallery

"
wave is excited at the critical angle th given by

. '3
suth2r==7t—ﬁlL;r*”Qn¢?§£> 07H§} ;

. . ’
creeprs clockwise ( SLK) or counterclockwise ( SHT) around

(72)

the cylinder with speed w//; sin 9‘,:1_ and radiates off at the
same angle after m circumnavigations. If we assume that the

cylinder is slightly lossy, so that kBT has a small imaginary
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part, then as a tends toward infinity, SAT also becomes
infinite, and the waves which creep around the shadow side
of the cylinder {[including the multiple circumnavigations
(m#0) ] are exponentially damped out and never reach the
observer. Tne waves which remain are those which traverse

the finite arc length Sy 7.

Y WV
P~ - Epi, (YL,Q] B 6\“‘}(‘1"“” Regrsir) %Te"l"(’%l-) a st

n= .
(73)
We now approximate the residue sum in Eg. (73) by an
integral:
( 23 th
MLsT . G\L T)Vao:' 2/3 < o0 l[aﬁ;‘:-l\] (—Lh;.‘) SL)T
L - L -
> e 2 %f dne
n=| (o]
(74)

where we have used the approximation?" for M that holds

for larce n.
](‘ - )/3
,,,InN ’3"('-ln \) '

The approximation of the sum by an integral is justified

(75)

because Aﬁﬂ-goes to infinity as a tends toward infinity and
because the function in the sum oscillates less rapidly as

n increases, so that the contributions to the sum (integral)

for small n tend to cancel out. Thus, the primaiy contribution
to the residue sum (integral) comes from the higher order poles.
We are, therefore, also completely justified in using the pole

positions 'den of Egs. (39), since the method used to calcu-

late them imposed an upper limit on X which increased monot-

onically with mode number WV (cf. Chapter ID2. and Figure 5).
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We point out that the method of approximating the residue sum
by an integral is similar to that used by Tamir and Felsen??®
for the dielectric slab problem. Rulf,?? on the other hand,
in considering the fluid-fluid (with‘q=(1 ) cvlinder problem,
did not use the explicit pole positions to evaluate the
residue sum, hut converted it back to a contour integral
surrounding the poles. We treat the fluid-fluid case using
our method in Appendix C.

In order to evaluate the integral in Eq. (74), first we

change variables

(76a)

and then we evaluate thé resultant integral:

f(qm a3
j dne’” \] kur) SL>"
C&g) s a_gith
url - _L )
[ e #= \7ALT '

(76b)

where we can assume that ItHT has a small imaginary
part to assure convergence.?®

In the limit of infinite radius, the expressions for
P%L and P1ﬂ.then correspond exactly to the expressions

for the longitudinal and transverse lateral waves for a flat

elastic half-space [cf. Egs. (B9)]:

é.‘.‘i«‘/q- o :'W-r‘l ei[iz(d,-r d)+ks
~ a
P Rt m-ed)er - 2o2) N

(77a)
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m (xr~o ) e L [R@td)+ ke s7)
o(_;f'y/l-f. L (a(-,'f' - :—)‘/ﬂ;‘ (h-T ST)B/L

(77b)
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Conclusions

e have estéblished the connection between creeping wave
and flat surface wave theory by investigating the limit of
acoustic scattering from a solid elastic cylinder, imbedded in
a fluid, whose radius tends to infinity.

First, we calculated the asymptotic behavior of the com-
plex circumferential wave numbers by substituting the appro-
priate Debye-or Airy-type asymptotic expansions into the 3 x 3
secular determinant and solving it using iterative techniques.
The creeping wave modes fall into two classes: those with
speeds close to the sound speed in the fluid (Stoneley and
Franz waves) and those with speeds close to the bulk wave
speeds in the solid (Rayleigh and Whispering Gallery waves).

It was found that, in the limit of infinite cylinder radius,

the wave numbers of the Rayleigh and Stoneley modes tend toward
those of the Rayleigh and Stoneley waves on a flat elastic
half-space, while the Franz mode wave numbers tend toward the
wave number of sound in the fluid. The longitudinal and trans-
verse Whispering Gallery mode wave nurmbers tend toward the long-
itudinal and transverse wave numbers in the solid. Graphical
results were presented for an aluminum cylinder in water (and

in one case, also in vacuum) in the form of trajectories in

the complex wave number plane, phase velocities, and attenua-
tions, all as functions of fluid wave number times cylinder
radius. The results show good agreement with existing numerical

results.

46



47

Then, using the Watson-Sommerfeld transformation, we
investigated the limiting behavior of the solution to the
problem of the scattering of a cylindrical wave from a cylinder
whose radius tends to infinity. Using the analytic expressions
for the creeping wave numbers, we calculated the asymptotic
behavior of the residue sums corresponding to the different
classes of circumferential waves. It was found that, in the
limit of infinite c¢ylinder radius, the Rayleigh wave for the

cylinder goes over to the Rayleigh wave on the flat elastic

half-space, while the Franz and Stoneley waves are exponentially

damped out (the StoneleyAwave contributes to the field in the
flat case only at glancing incidence, which is a special case
mathematically, and was not discussed). In the limit, the
longitudinal and transverse Whispering Gallery waves combine
to form the longitudinal and transverse lateral waves, respec-
tively, for the flat elastic half-space.

Thus, the transition of creeping wave to surface wave
theory, as the scattering object tends toward a flat surface,

has been established.
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Appendix A

Asymptotic Expansions of Cylinder Functions!3’i4s17723

In the following, we present asymptotic expansions of
cylinder functions where both the values of the (real) argu-
ment,q_, and of the modulus of the (complex) index, ¥, are
large.

1. Debye asymptotic expansions

Debye expansions are appropriate for large values of
\’“'gj==8q9, and are used outside the circles shown in Figure
A1 whose radii are determined by lv‘jlz 8'(*}'/’) The Debye
expansions

1 .
ay 2 ' ex {,_( z_yz.)/’-_ ,‘_ycos"v/ _«.4:‘/&;}
~

& C?p éﬁ - g(f}z'vz)‘/v i

L LS 3
X 1—(3;_y1.57r_ [‘g‘ 24 Zyz_?r_g +* 6'63 ) 3

(Ala)
Y iy el sy
(/3 %)
X 1+__L—7—[‘_.____§1:— 0,( -z.>
(gtv’-) 'Y 2‘{(\/’;,31-) + a
(Alb)
are valid in Regions I and II of Figure Al, with
l QV\J (31—V‘S/L( < '\"\‘/:L
o4 Re,(cos"v/}}gr.p
ITwm (cos"v/g‘) 40 ('R:.Zm-v\ )
20 (R&ﬁkﬂk]f}.
(Alc)
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These regions are separated by the curves

Iim I:(ﬁ_’f—v‘)'h— v cos"v/wa_] =0 (22)

and by the portions of the real axis as indicated in the
figure. The roots of fﬁfkﬁ) and of hcbté) lie on the curves
labeled htz in Figure Al, those of hcﬁz§§ and /{3y63> on
the curves labeled htz-

In Region III, one has instead
H\:h(}\ ~N =L (%'/" EXPp {‘ (V’r-z’-z’/ “ ::): :.o sk—‘v/g_-} :
X:{}-— ] f:itg} Sy* (A3a)
SR R
Hy(ﬂ(g\) ~ H SB(AA\ 3

(A3b)
with
\cwg O ,}"-)’/?—\ X0
Re(eo 5\';\"/'3_5 >0
|Tw (cosh‘\"/g\\ Lo .
(A3c)

In Regions IV and V, the appropriate results are obtained
by using |

@ = HIG)
0\(3\ = H f“(gb : (24)

-v
The curves ht1 are the anti-Stokes lines for the
: . )
asymptotic expansions of }L,Q?,,and the curves htz those

for FL?%}) . In the vicinity of these lines (the "transition
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region"), the sum of the asymptotic expansions for the two
adjécent regions has to be used. In the ensuing "transition
Debye forms," the two exponentials then combine to form trig-
onometric functions, while outside the transition regions, one
of the two exponentials is dominant and the other subdominant.
Debye asymptotic expansions for the Bessel functions are,

for Region III

];(:P ~ @D cxyb{( "5/ -vcosh V/}}
(y’- r-) Iy

X{l+ { 24@ g +&<3_1.>}

\O.V*}(v‘-a")'/") L0~
Re (cosWV/'}X >0
| Im (Cos\'\"v/“_\\4 T . (A5D)

In all other regions, the appropriate expansions are found

(A5a)

with

by using
Tep=t [H:J\(g\ + Hff\(gg_\

. . @
together with the previously stated results for HL Cg\ .

(A6)

The zeros of 33633 are located on the real axis in Figure Al,
to the left of . This portion of the real axis forms the
anti-Stokes line for 3;(95, and in the surrounding transition

region, one must use

o
TV%SN%)(’J—"‘%’W {“sw* G- [ 4*’3}

X.shnbd-+¢&cg

(A7a)
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with
- 2 LVL_ -l -”
W= (8 my) oy ces y/.} u/% (A7b)
where
| C-v3™ 2T
o0& Re(cos™ V/Ja,\‘:-@ :
(A7c)

2. Airy-type asymptotic expansions

For the case that \V—Adfl: &C_ztll) , asymptotic expansions
of the cylinder functions which are expressed in terms of
the Airy function are appropriate. They are valid inside the

circles of Figure Al. We havel!3’1!*®

H;')(JJB ~ 2(%"[31; LYy %_e—m‘b) + &E(—z/: (wm\]

(A8a)
H gy~ 22 G eL@IBHL(— &) 4 o[ ¥ ¢
a 6_3‘-3 ’ 7’ ) [ ] (A8b)
where
= N R@/2YH?
T>.g }=O & <;}3 y nse)
:.vn - 3 2“3
Fg= P oy
(A84)
with
£ = treny/2\P e
b= o)
and |
F®=1, B&=5%, (A8E)

(A8qg)
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and where the Airy function is given by

Au(D= 27 [1,6)+ Ty

(A9%a)
= 2 3z .
C=%2%;
(A9b)
it satisfies Airy's equation,
" N _
A B-zARL®>=0. (A10)

For J;QP, one finds the compact expression

ep~ (—%—sz H‘v(%)Jr & [f&-%‘w'ﬂ . (A11)



Appendix B

The Reflection of a Cylindrical Wave at a Plane

Fluid-Solid Interface

In this section, we calculate the total acoustic field
due to a line source in the presence of a plane fluid-solid
interface, where both source and receiver are situated in
the fluid. The analysis follows that of Brekhovskikh? and
Uoerall,! who considered the fluid-fluid and fluid-solid cases
for a point source, respectively. The field can be resolved
into the incident wave, the geometrically reflected wave, and
surface and lateral waves which propagate along the boundary
and radiate into the fluid.

The geometry of the problem is shown in Figure Bl. 2An
infinite line source of unit strength is located at S. The
incident pressure wave at the observation point P is, there-

b1

fore [with a time factor exp(-iwt) suppressed]

- L [4)
Finc_" T Ho (éf’> . (B1)

Using the Sommerfeld representation!? for the Hankel function,
we can write the incident field as a decomposition into plane

waves®* with angle of incidence®:

~ iR(X S8 + [2-2,]cosB)
- _L
Pinc= w7 e

where the contour C is drawn in Figure B2. The reflected

(B2)

wave is then given by!’?
. NI &
H=—'-£<l@ 2(6) efhl: MO+ @ +2ycos 8]
TVe 4f (B3a)
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where R(®) is the plane wave reflection coefficient for a

plane fluid-solid interface:!

R= D‘[D+ 5 (B3b)

with
. 2 N
D, = [.c058 [(15;“— Sin*Q) + 4b.br sm"@-]
A 2 2
+ swm &
L (albLCbT‘}— wn 3 (B30)
and
[}
— Ro__o 2 lz‘ _ h
£L;r" (0('-,1" s 9\ “L)T'- L)Tlh . (B30)
Equation (B3a) for the reflected wave can be rewritten
as
- chp'cos(o-
Presi = 2 | d RE® O <0s(6-8)
< (B4)

where (ﬂ is the distance from the image source S' to the
observation point P.

The integral in Eqg. (B4) is evaluated using the method
of steepest descent!’?, where we assume kf’})l . The path
of steepest descent Ck and the saddle point E% (corresponding
to the angle of incidence or reflection of the geometrically
reflected wave) are shown in Figure B2. The result for the

geometrically reflected wave is then

' ., N I
= & [27 N Lhe
fﬁm: y 7F-€ FEOQJ e -
;kf (B5)
as expected from geometrical acoustics.

Additional contributions to the reflected field arise

from any singularities of R(®) which are crossed as contour
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C is deformed into contour C;. Branch point singularities,

provided by the radicals anb13 are found at

Bo= tsin'a Br= tsintor

> (B6)
while poles [corresponding to solutions of D+=0, which is
completely equivalent to the generalized Rayleigh Eg. (8)]

of physical interest occur at

sz sin™ (/a,e_/k)> G'S: s»‘V\'ldlsl hb (B7)
where h& and hs are the Rayleigh and Stoneley wave numbers
[e.g., Egs. (11) and (16) for the water-aluminum interface].
These branch points (and the corresponding branch cuts) and
poles are shown in Figure B2.

The angles Reei, Ree§, é&, and éh-are the critical angles
of incidence for excitation of the Rayleigh, Stoneley, and
longitudinal and transverse lateral waves, respectively (for
the water-aluminum interface: e,_=l3°26' ’ 6-’,-=29°20' ,Re- e§_=3l°36' ’
R€3,=90°) . When GZRQ&Q, 8., ana 8+, as in Figure B2, then the
Rayleigh and lateral waves contribute to the field at the
observation point P. The Rayleigh wave contribution is found
from the residue at the Rayleigh pole, while the longitudinal
and transverse lateral wave contributions arise from integrals
around the branch cuts originating at Gt and E#, respectively.
The resulting expressions are:

Rayleigh Wave:
:._J_]D-<e§b e&_ﬁ;(yd+ﬁ§+42k\_é}
Pr= "% D, 6 (B8a)

SSYTINN

o
-
Yo
e

)



56
where
L= % Icose'k , L= %{cosek) D.(&)= 3-D+(95/ 28 (B8b)
Longitudinal Lateral Wave:

Pz &t aloy e (RO AL
VR m (ad) @ -202) Ch L (B9a)

Transverse Lateral Wave:

pr=2 F Sl m (o) et [k (Lo+LY+hy Ll]
" [m¢- AL (oF -o(&)"’:_ll h, LT)3/1

(B9b)

where

Lom Zofeosbip y L2 [eostir y m= i/ - (B9c)
The geometrical meaning of these results is clear from
inspection of the phases and Figures B3 and B4. In each
case, the wave is excited at its critical angle, propagates
along the interface, and reaches the observation point P by
radiating into the fluid at the same angle.

The Stoneley wave is not excited unless 6;*"—7?‘/2 (glancing
incidence), in which case the method of steepest descent must
be modified to take into account the effect of a pole near

the saddle point.? This case will not be discussed here.



Appendix C

Creeping Waves and Lateral Waves

for the Fluid Cylinder

In the case of scattering by a fluid cylinder (C4=20) we

have the residue sum‘P& of Egs. (53) or (61) with

£.0ny= x

v:? @ Ffr T 60 (c1)

The Whispering Gallery pole positions are given by'"

Y
Vo= X+ "ln(’—% y o@D (2)

where, as in the case of the solid, the material properties
enter only in higher order terms. Using the appropriate
Debye expansions for the Hankel functions of X and Airy-type
expansions for the Bessel functions of X_ (cf. Appendix A)
along with Egs. (65) and the fact that
' .
3;(’('-3 = E;_ a '
JX Y=o el 3 (C3)

we obtain the result

Y?:Cngn _fi____

Ca(-ad) " ’ (c4)
which is just the limit of Eq. (67) for the solid as o,
goes to infinity. Then, using Egs. (62), (46b), (70), and
(C4), and approximating the residue sum by an integral as

before, we find that
p S a2 il rhs]
1L
) \’zﬂ‘ m(\—tx ) (h\_sl_\z(l )

57

(c5)
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which is just the limit of Eg. (77a) as dy goes to infinity
and corresponds exactly to the expression for the lateral

wave for a flat fluid half-space?’22,



List of Illustrations

Fig. 1 Complex Y -plane with various regions in which dif-
ferent asymptotic expansions of cylinder functions

are employed in our analytic calculation.

Fig. 2 Rayleigh zero trajectory in the complex plane k&¢k
at varving Values of the parameter ka, for the case
of an aluminum cylinder in water.

Crosses: present work; solid circles: numerical
results of Uginlius®; solid square: flat Rayleigh
limit. Also shown is the location of .l-r/k. , whose

(real) numerical value is 0.491.

Fig. 3 Stdneley zero trajectory ih the complex plane h;4k
at varying values of the parameter ka, for the

case of an aluminum cylinder in water.

Fig. 4 Franz zero trajectories in the complex plane kp“!k_ at
varying values of the parameter ka, for the cases of
soft (@), rigid (e), and aluminum cylinders (x) in
water: (a) first Franz zero, n=1, (b) second Franz

zero, N=2.

Fig. 5 The value of ka, as a function of mode number N, at
which the absolute value of the relative error in

the approximation to the tangent function, used to

59
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calculate the longitudinal Whispering Gallery zeros,

begins to exceed 25 percent.

Fig. 6 Rayleigh zero trajectory in the complex plane hRJh
| at varying values of the parameter ka, for the case
of an aluminum cylinder in water. Crosses: analytic
results; square: flat Rayleigh limit (ka=»e). Circles:

numerical results.

Fig. 7 (a) Normalized phase velocity-CRq&L of the Rayleigh
wave for an aluminum cylinder in water, plotted vs.
ka. Circles: Numerical results, curve: analytic
results.

(b) Normalized phase velocity ck¢0n of the Rayleigh
wave, plotted vs. kka. Circles: numerical results
for aluminum cylinder in air. Curve: analytic

8rs18

results, and crosses: Viktorov's results, both

for aluminum cylinder in a vacuumn.

Fig. 8 Dispersion curve for the Stoneley wave on an aluminum
cylinder in water. Solid circles: numerical results.

Crosses: analytic results.

Fig. 9 Stoneley and first five Franz zeros for an aluminum
cylinder in water. (a) Dispersion curves, (b) normal-~

ized attenuation. For the Franz zeros, analytic



Fig.

Fig.

Fig.

Fig.

10

11

12

13
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results are given by solid curves, numerical results
by open circles. For the Stoneley zero, analytic
results are given by crosses, numerical results by

solid circles.

(a) Dispersion curves for the first five transverse
Yhispering Gallery zeros and the Rayleigh zero for an
aluminum cylinder in water. The numerical results are
given by solid curves; the analytic results are shown
as long dashes where they are most accurate and short
dashes where they are less reliable.

(b) Normalized attenuations for the Whispering Gallery
zeros. Solid curves: numerical results for first four
zeros. Short dashes: extrapolated numerical results.

Long dashes: analytic results for first two zeros.

The first seven longitudinal Whispering Gallery zeros
for an aluminum cylinder in water. (a) Dispersion
curves, (b) normalized attenuation. The analytic
results are shown as solid curves where they are most

accurate and dashes where they are less reliable.

Geometry of the cylinder scattering problem; line

source at S, observer at P.

The complex Y-plane showing contours for the Watson-

Sommerfeld transformation used in the elastic cylinder

Lastal
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scattering problem [Figure taken from Doolittle,
et al." with permission of the American Institute

of Physics].

Fig. 14 The complex W-plane showing contours for separating
out the geometrical wave. Also shown schematically
are the positions of the saddle point Vs and the
Rayleigh ( heao, Stoneley (Rgi0Q), Franz (¥¢), and
longitudinal (¥%.) and transverse (Ywr) Whispering

Gallery poles for a large, fixed value of ka.

Fig. 15 Franz or Stoneley wave getting on the cylinder tan-
gentially, creeping clockwise (Fig. 15a) or counter-
clockwise (Figure 15b) around it, and getting off

the cylinder tangentially.

Fig. 16 Rayleigh wave being excited at the critical angle 6k,
creeping clockwise or counterclockwise around the

cylinder, and radiating off at the same angle.

Fig. 17 Longitudinal or transverse Whispering Gallery wave
being excited at the critical angle Ghﬂ-, creeping
clockwise or counterclockwise around the cylinder,

and radiating off at the same angle.

Fig. Al Complex V-plane showing regions of validity for dif-
ferent asymptotic expansions of the cylinder functions,

used in the analytic calculation.



Fig. Bl

Fig. B2

Fig. B3

Fig. B4
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Geometry of an observer at P receiving a cylindrical
wave from a line source at S and a reflected wave

from the image source at S'.

Integration path C for the incident and reflected
waves in the complex &-plane; saddle point @, with
path of steepest descent Cs; Rayleigh pole Qk, Stoneley
pole & , and branch points E&,G# with corresponding

branch cuts (dashed lines).

Cylindrical wave from source S exciting Rayleigh wave
at point A, which propagates along interface and
reaches observation point P by radiating into fluid

at point B.

Cylindrical wave from source S exciting longitudinal
or transverse lateral wave at point A, which propagates
along interface and reaches ohservation point P by

radiating into fluid at point B.
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